Renseignements généraux

Propriétés types du composé brut qui sert à la fabrication des conduits

Propriétés thermiques	test ASTM	Valeurs types
Coefficient d'expansion thermique (po/po/°C)(propriétés à 23 °C)	D696	3,38 x 10-5
Distorsion thermique (°C à 264 psi)	D648	71 °C
Conductivité thermique en BTU (hr) (pi) (°C/po)	_	1,3

Propriétés électriques	test ASTM	Valeurs types
Rigidité diélectrique (volts/mil)	D149	1100
Constante diélectrique (60 Hz @ 30 °C)	D150	4,00
Facteur de puissance (60 Hz @ 30 °C)	D150	1,93

Propriétés mécaniques	test ASTM	Valeurs types
Densité	D792	1,43-1,6
Résistance à la traction (psi) @ 23 °C	D638	5 000-6 500
Résistance à la rupture par entaille (test Izod) pi Ib/po	D256	0,65-1,5
Résistance à la flexion (psi)	D790	12 500
Résistance à la compression (psi)	D695	9 000
Dureté (duromètre D)	D2240	85

Propriétés d'impédance (volts perdus par ampère par 100 pieds)	Ø3 90% P.F.	80% P.F.	Ø1 90% P.F.	80% P.F.
Conduit en acier	0,0118	0,0123	0,0136	0,0142
PVC Schedule 40	0.0105	0.0106	0.0121	0.0122

Test effectué à l'usage d'un conducteur en cuivre de 250 kcmil; valeurs comparables pour les autres calibres de conducteurs.

Comparaison des poids

Poids du conduit rigide non métallique Schedule 40 de Carlon comparé au poids d'autres conduits rigides. Poids exprimé en livres par 100 pieds (environ).

Nom. Gros. nom. (po)	Conduit rigide NM Carlon Schedule 40	Conduit rigide NM Carlon Schedule 80	Alumi- nium	Tube électrique métallique	Conduit métallique intermédiaire	Conduit métallique rigide
1/2	18	22	27	30	57	79
3/4	23	29	36	46	78	105
1	35	43	43	66	112	153
11/4	48	60	70	96	114	201
11/2	57	72	86	112	176	246
2	76	100	116	142	230	334
21/2	125	153	183	230	393	527
3	164	212	239	270	483	690
31/2	198		288	350	561	831
4	234	310	340	400	625	982
5	317	431	465	Non fabriqué	Non fabriqué	1344
6	412	592	612	Non fabriqué	Non fabriqué	1770

Contenu (nombre de conducteurs)

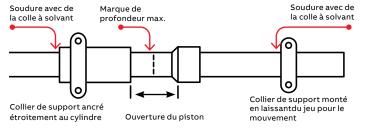
Nombre maximal de conducteurs qui peuvent être logés dans un conduit en PVC Schedule 40 Données selon tableau 1, chapitre 9 du code américain de l'électricité [NEC])

Type de	Calibre de conducteur								G	rosse	eur ne	omin	ale d	u cor	duit
conduit (lettres)	(AWG, kcmil)	1/2	3/4	1	11/4	1½	2	2½	3	3½	4	41/4	5	6	8
THWN	14	13	24	39	69	94	154								
	12	10	18	29	51	79	114	164							
THHN	10	6	11	18	32	44	73	194	160						
	8	3	5	9	19	22	36	51	71	106	136				
FEP	6	1	4	6	11	15	26	37	57	76	98	125	154		
(14 à 2)	4	1	2	4	7	9	16	22	35	47	60	75	94	137	236
	3	1	1	3	6	8	13	19	29	39	51	64	90	116	201
FEPB	2	1	1	3	5	7	11	16	25	33	43	54	67	97	169
(14 à 4/0)	1		1	1	3	5	9	12	18	25	32	49	59	72	125
PFA	1/0		1	1	3	4	7	10	15	21	27	33	42	61	105
(14 à 8)	2/0		1	1	2	3	6	8	13	17	22	29	35	51	88
(2.00)	3/0		1	1	1	3	5	7	11	14	18	23	29	42	73
PFAH	4/050		1	1	1	2	4	6	9	12	15	19	24	35	61
(14 à 4/0)	250			1	1	1	3	4	7	10	12	16	20	28	49
	300			1	1	1	3	4	6	8	11	13	17	24	42
Z	350			1	1	1	2	3	5	7	9	12	15	21	37
(14 à 4/0)	400				1	1	1	3	5	6	8	10	13	19	33
XHHW	500				1	1	1	2	4	5	7	9	11	16	27
(4 à 500)	600				1	1	1	1	3	4	5	7	9	13	22
(+ a 300)	700					1	1	1	3	4	5	6	8	11	19
XHHW	750					1	1	1	2	3	4	6	7	11	19
	6	1	3	5	9	13	21	30	47	63	81	102	128	185	320
	600				1	1	1	1	3	4	5	7	9	13	22
	700					1	1	1	3	4	5	6	7	11	19
	750					1	1	1	2	3	4	6	7	10	18

Renseignements généraux

Dilatation/contraction

Facteurs de température à considérer dans le calcul de la compensation pour la dilatation linéaire des conduits rigides non métalliques


Comme tous les matériaux de construction, le PVC se dilate ou se contracte selon les variations de température. Le coefficient de dilatation linéaire des conduits en PVC est de $3,38 \times 10-5$ po/po/°C comparativement à $1,2 \times 10-5$ pour l'aluminium et à $0,6-5 \times 10-5$ pour l'acier. Un raccord de dilatation doit être installé lorsque le changement de longueur causé par les variations de température est de 1/4 po ou plus. Lorsque le conduit est installé en plein soleil, il faut ajouter 1°C afin de tenir compte de la chaleur rayonnante.

Un raccord de dilatation compte deux parties, l'une qui se télescope à l'intérieur de l'autre. À l'installation d'un raccord de dilatation, il importe de tenir compte de l'alignement entre piston et cylindre. Pour un meilleur rendement, assurez-vous d'installer les raccords d'expansion à niveau.

Pour les parcours verticaux, les raccords d'expansion doivent être installés près du haut du parcours, cylindre vers le bas, afin que l'eau de pluie ne puisse s'infiltrer dans l'ouverture. Le bas du parcours du conduit doit être fixé afin que tout changement de longueur causé par les variations de température produise un mouvement vers le haut.

Caractéristiques de dilatation de conduits rigides NM en PVC Coefficient de dilatation thermique = 3,38 x 10-5 po/po/°C

Chgmt de T°c	Chgmt de long. en po/ 100 pi de conduit en PVC		Chgmt de long. en po/ 100 pi de conduit en PVC	Chgmt de T°c	Chgmt de long. en po/ 100 pi de conduit en PVC	Chgmt de T°c	Chgmt de long. en po/ 100 pi de conduit en PVC
5	0,2	12,8	2,2	40,5	4,2	68,3	6,3
10	0,4	15,6	2,4	43,3	4,5	71,1	6,5
15	0,6	18,3	2,6	46,0	4,7	73,9	6,7
20	0,8	21,1	2,8	48,9	4,9	76,7	6,9
25	1,0	23,9	3,0	51,6	5,1	79,4	7,1
30	1,2	26,7	3,2	54,4	5,3	82,2	7,3
35	1,4	29,4	3,4	57,2	5,5	85,0	7,5
40	1,6	32,2	3,6	60,0	5,7	87,8	7,7
45	1,8	35,0	3,8	62,7	5,9	90,6	7,9
50	2,0	37,8	4,1	65,5	6,1	93,3	8,1

Détermination de l'ouverture du piston

Un joint de dilatation doit être installé pour permettre le mouvement de dilatation/contraction d'un parcours de conduit. Pour calculer l'ouverture exacte du piston pour n'importe quelle condition d'installation, utilisez cette formule :

$$O = \left[\frac{T \max - T \text{ à l'installation}}{\Delta T} \right] E$$

Légende

Ouverture de piston (po)

T max = Température maximale anticipée du conduit (°C)
T inst. = Température du conduit à l'installation (°C)
ΔT = Changement total de la température du conduit (°C)

E = Jeu de mouvement intégré dans chaque raccord de dilatation (po)

Exemple

Un seul parcours de conduit droit de 380 pi doit être installé à l'extérieur d'un bâtiment et sera exposé au soleil. Il est anticipé que le conduit subira des températures allant de -17°C en hiver à 60°C en été (compris dans ce calcul est un facteur de rayonnement du soleil de -1°C). La température d'installation du conduit est de 32°C. Selon le tableau à gauche, un changement de température de 60°C causera une dilatation de 5,7 po de longueur pour chaque 100 pi de conduit. Le changement total pour cet exemple se calcule de la façon suivante : 5,7 po x 3,8 = 21,67 po, arrondi à 22 po. Le nombre de raccords de dilatation se calcule comme suit : 22 po x le taux de dilatation du raccord (4 po pour les grosseurs nominales de conduit Carlon de 1/2 à 11/2 po et 8 po pour les grosseurs de 2 à 6 po). Si le raccord E945D est utilisé, le nombre nécessaire de raccords se calcule comme suit : 22 po x 4 = 5,50, arrondi à 6. Les raccords devraient être installés à intervalles de 62 pi (380 x 6). L'emplacement approprié pour le piston au moment de l'installation est calculé selon cette explication.

$$O = \left[\frac{60 \text{ °C} - 32 \text{ °C}}{60 \text{ °C}} \right] 4,0 = 1,4 \text{ po}$$

Insérez le piston dans le cylindre à la profondeur maximale. Placez une marque sur le piston au bout du cylindre. Pour bien installer le piston, le retirer du cylindre d'une longueur correspon- dante au 2.1 po selon le calcul ci-haut (voir le schéma à gauche).

Sommaire

- Pour les installations aériennes exposées, anticipez le mouvement dilatation/contraction des conduits en PVC.
- Lorsque la longueur de dilatation causée par les variations de température est de ¼ po ou plus, un raccord de dilatation doit être installé.
- Lorsque la longueur de dilatation causée par les variations de température est de ¼ po ou plus, un raccord de dilatation doit être installé.
- 4. Pour éviter le grippage, il est important d'installer les raccords de dilatation en alignement avec les conduits.
- 5. Respectez les instructions pour déterminer l'ouverture du piston.
- 6. Le cylindre extérieur du raccord de dilatation doit être solidement fixé pour qu'il ne puisse bouger. Évitez de trop serrer le conduit raccordé au piston afin de permettre au conduit de se déplacer selon les changements de température.

Renseignements généraux

Résistance à la corrosion des conduits et raccords en PVC Carlon de type Schedule 40

En conditions normales, les conduits et raccords en PVC Carlon Schedule 40 peuvent servir en environnements où il y a présence des produits chimiques listés au tableau qui suit. Ces cotes de résistance environnementale sont fondées sur des tests durant lesquels les échantillons ont été complètement submergés dans le réactif indiqué. Les conduits Schedule 40 peuvent être installés dans les aires de traitement où des

produits chimiques non inclus dans la liste sont fabriqués ou utilisés parce que la sécurité des employés exige que la présence d'air et l'éclaboussement soient maintenus à un très bas niveau. S'il y avait quelque question sur la convenance de l'usage de ces conduits dans un environnement précis, des échantillons proto-types devraient être testés en conditions réelles.

Phosphure

Propane

d'hydrogène

Potasse caustique

pour one our o motum
Acétate de plomb
Acétate de sodium
Acétylène
Acide acétique 0-20 %
Acide acétique 20-30 %
Acide acétique 30-60 %
Acide acétique 80 %
Acide acétique
(glacial)
Acide acétique
(vapeurs)
Acide adipique
Acide anthraquino-
nesulfonique
Acide arsénique 80 %
Acide arylesulfonique
Acide benzoïque
Acide borique
Acide bromique
Acide butyrique
Acide carbonique
Acide chloracétique
Acide chlorosulfonique
Acide chromique 10%
Acide chromique 30%
Acide chromique 40%
Acide chromique 50 %
Acide citrique
Acide crésylique 50%
Acide diglycolique
Acide fluoroborique
Acide fluorosilicique
Acide formique
Acide gallique
Acide glycolique
Acide hydrobromique 20%
Acide hydrochlorique 0-25%
Acide hydrochlorique 25 40%
Acide hydrocyanique
ou cyanure
d'hydrogène
Acide hydrofluorique
10%
Acide
hydrofluorosilicique
Acide lactique 28%
Acide laurique
Acide linoléique
Acide maléique

Acide malique

Acide nitrique

Borax

(anhydre)

Acide nitrique 20%
Acide nitrique 40%
Acide nitrique 60%
Acide oléique
Acide oxalique
Acide palmitique 10%
Acide perchlorique
10%
Acide phosphorique 0-25%
Acide phosphorique 25-50%
Acide phosphorique 50-85%
Acide silicique
Acide stéarique
Acide sulfureux
Acide sulfurique
anhydre
Acide sulfurique 0-10%
Acide sulfurique 10-75%
Acide sulfurique 75-90%
Acide tannique
Acide tartrique
Acides gras
Alcool amylique
Alcool butylique
Alcool éthylique
Alcool propylique
Alun
Alun de chrome
Ammoniac (gaz sec)
Anhydride azoteux
Anhydride carbonique
(humide)
Anhydride carbonique
(solution aqueuse)
Anhydride sulfurique
Anthraquinone
Arsénite de sodium
Benzoate de sodium
Benzolène sulfonique
10%
Bicarbonate de potassium
Bicarbonate de soude
HICHTOMOTO do
Bichromate de potassium
potassium Bifluorure
potassium Bifluorure d'ammonium
potassium Bifluorure d'ammonium Bisulfate de sodium
potassium Bifluorure d'ammonium Bisulfate de sodium Bisulfite de calcium
potassium Bifluorure d'ammonium Bisulfate de sodium

Bromure de potassium
Bromure de sodium
Butadiène
Butane
Butylène
Carbonate
d'ammonium
Carbonate de baryum
Carbonate de bismuth
Carbonate de calcium
Carbonate de
magnésium
Carbonate de
potassium
Chaux sulfurée
Chlorate de calcium
Chlorate de sodium
Chlore
Chlorure cuprique
Chlorure d'aluminium
Chlorure d'ammonium
Chlorure de baryum
Chlorure de calcium
Chlorure de lauryle
Chlorure de
magnésium
Chlorure de mercure
Chlorure de méthylène
Chlorure de nickel
Chlorure de potassium
Chlorure de sodium
Chlorure de zinc
Chlorure ferreux
Chlorure ferrique
Chromate de
potassium
Chromate de zinc
Cyanure cuprique
Cyanure d'argent
Cyanure de mercure
Cyanure de potassium
Cyanure de sodium
Cyanure de zinc
Dextrine
Dextrose
Dichromate de
potassium
Dichromate de sodium
Eau de brome
Eau de chlore
Eau déminéralisée
Eau régale
Essence raffinée

Essence sulfurée

,
Ethylène glycol
Ferricyanure de
sodium
Ferrocyanure de
sodium
Fluor (gaz humide)
Fluor (gaz sec)
Fluorure cuprique
Fluorure d'aluminium
Fluorure de potassium
Fluorure de sodium
Formaldéhyde
Fructose
Gaz chlorique (sec)
Gaz chlorique
(humide)
Gaz de four à coke
Gaz naturel (sec)
Gaz naturel (humide)
Gaz sulfureux (sec)
Glucose
Glycérine (glycérol)
Glycol
Heptane
Hexanol (tertiaire)
Huile de graine de
coton
Huile de lin
Huiles et graisses
Huiles lubrifiantes
Huiles minérales
Hydrate de chloral
Hydrocarbures
Hydrochlorure de
phénylhydrazine
Hydroquinone
Hydroxyde
d'aluminium
Hydroxyde
d'ammonium 28 %
Hydroxyde de baryum
Hydroxyde de calcium
Hydroxyde de
magnésium
Hydroxyde de
potassium
Hydroxyde de sodium
Hypochlorite de
calcium
Hypochlorite de
sodium
lode
Jus tannant (jusée)
V funnium

Kérosène

Liqueur blanche

(in al., at via no no ati \ vo)	Duveniete inven
(industrie papetière)	Prussiate jaune
Liqueur noire	Prussiate rouge
(industrie papetière)	Révélateur
Liqueur verte	photographique
(industrie papetière)	Saumure
Liquide de	Solutions de placage
blanchiment	Solutions de placage à l'argent
12,5% (CL2 actif)	
Liquides de sucre de	Soude caustique Soufre
betteraves	
Mercure	Stanichlorure
Méthaphosphate d'ammonium	Stanochlorure
Naphtalène	Sulfate cuprique
	Sulfate d'aluminium
Nitrate cuprique Nitrate d'aluminium	Sulfate d'ammonium
	Sulfate
Nitrate d'ammonium	d'hydroxylamine
Nitrate d'argent	Sulfate de baryum
Nitrate de calcium	Sulfate de calcium
Nitrate de magnésium	Sulfate de lauryle
Nitrate de nickel	Sulfate de magnésium
Nitrate de potassium	Sulfate de méthyle
Nitrate de sodium	Sulfate de potassium
Nitrate de zinc	Sulfate de sodium
Nitrate ferrique	Sulfate de zinc
Nitrate mercureux	Sulfate ferreux
Nitrite de sodium	Sulfate ferrique
Nitrobenzène	Sulfite de sodium
Oxychlorure	Sulfure d'ammonium
d'aluminium	Sulfure d'hydrogène
Oxyde de carbone	(sèche)
Oxyde nitreux	Sulfure d'hydrogène
Perborate de	(solution aqueuse)
potassium Perchlorite de	Sulfure de baryum
potassium	Sulfure de sodium
Permenganate de	Térébenthine
potassium 10%	Tétrachlorure de titane
Persulfate	Thiocyanate
d'ammonium	d'ammonium
Persulfate de	Thiosulfate de sodium
potassium	(hypo) Trichlorure
Pétrole brut acide	d'antimoine
Pétrole brut non	Triéthanolamine
corrosif	Triméthylolpropane
Phénol butylique	Urée
Phosgène (gaz)	Vinaigre
Phosphate bisodique	Vinalgre
Phosphate	
d'ammonium (neutre)	Whisky
Phosphate trisodique	