Guide de sélection de matériaux

ABB offre des attaches pour câbles Ty-Rap et des accessoires dans une grande variété de matériaux, chacun convenant à des conditions environnementales spécifiques.

Le but de ce document est de vous aider à choisir le matériau le mieux adapté à votre application particulière. Les effets du climat, des flammes, des produits chimiques, des températures extrêmes et de la radiation sur les différents matériaux sont clairement présentés dans les tableaux suivants pour simplifier le processus.

Une fois que vous avez déterminé le matériel qui convient le mieux, vous pouvez choisir parmi la grande variété d'attaches pour câbles Ty-Rap, attaches d'identification, embases de montage, sangles de fixation, etc. offertes par ABB.

Comment utiliser le tableau 1

Le tableau 1 simplifie le processus de sélection en donnant les cotes de performance relatives des matériaux offerts par ABB. Par exemple, si votre application est dans un environnement d'un froid extrême, 4 matériaux répondront à vos besoins : fluoropolymère, polyamide 12, Halar^{MD*} et l'acier inoxydable. Ensuite, le coût peut être votre critère suivant le plus important. Parmi ces 4 options, polyamide 12 serait le plus rentable. Cependant, si la résistance à la traction est importante, alors l'acier inoxydable serait le meilleur choix.

Se rapporter aux tableaux 2 (page C134) et 3 (pages C140-C142) pour de l'information plus détaillée concernant respectivement les propriétés physiques des matériaux et la résistance chimique des matériaux.

Il est extrêmement difficile de fournir des données sur toutes les combinaisons possibles ou les conditions pouvant survenir. Cette information est basée sur les données fournies par les fabricants et est fournie seulement comme un guide général. L'intention n'est pas de fournir une recommandation spécifique. Comme chaque application peut être différente, des échantillons d'attaches pour câbles devraient être testés par l'utilisateur dans l'application prévue pour en déterminer la convenance.

* Halar™ est une marque déposée de Solvay Solexis, inc.

Tableau 1

									Matériau	x disponibles
	Polyamide 6.6 Naturel	Polyamide 6.6 résistant aux conditions climatiques	6.6	Polyamide 6.6		propylène résistant aux conditions	Fluoro- poly- mère	Halar™D	Acier inoxy- dable	Acétal résistant aux conditions climatiques
Résisistance aux rayons ultra-violets	1	4	1	1	4	4	5	5	5	4
Résistance aux radiations	1	1	1	1	1	1	4	4	5	1
Température basse	3	3	3	2	4	3	4	4	5	4
Température haute	3	3	4	3	2	2	4	4	5	2
Inflammabilité	3	3	3	4	1	1	4	4	5	1
Résistance à la traction	3	3	3	3	2	1	3	3	5	2
Coût relatif	Bas	Bas	Bas	Moyen	Moyen	Bas	Élevé	Élevé	Élevé	Élevé
Résistance chimique					Voir Tablea	ıu 3				

^{1 =} Moins approprié

^{5 =} Plus approprié

Guide de sélection et de commande des matériaux

Propriétés physiques des matériaux des attaches pour câbles

— Tableau 2

		Polyamide 6.6 Naturel	Polyamide 6.6 résistant aux conditions climatiques	Polyamide 6.6 naturel thermo- stabilisé	Polyamide 6.6 résistant aux flammes	Polyamide 12 résistant aux conditions climatiques	Poly- propylène résistant aux conditions climatiques	Fluoro- polymère résistant aux radiations	Fluoro- polymère ECTFE	Acier inoxy- dable
Propriétés physiques d	les mat	tériaux des a	ttaches pour câ	bles Ty-Rap						
Résistance à la traction (rendement) @ 23°C (sec-comme moulé) (1)	psi	12 000	12 000	12 000	11 000	7 500	4 600	6 700	6 600	90 000
Cote d'inflammabilité	-	UL 94 V-2	UL 94 V-2	UL 94 V-2	UL 94 V-0	_	_	UL 94 V-0	UL 94 V-0	_
Résistance aux radiations	rads	1 x 105	1 x 105	1 x 105	1 x 105	1 x 105	1 x 105	2 x 108	2 x 108	2 x 108
Résistance aux rayons ultraviolets	_	Faible	Bonne	Faible	Faible	Bonne	Bonne	Excellent	Excellent	Excellent
Absorption de l'eau (24 h)	%	1,3	1,2	1,4	1,4	0,25	0,1	<,01	<,01	Aucune
Indice d'oxygène	-	28	28	31	34	_	_	30	52	_
Température max. en utilisation continue	°C/°F	85 / 185	85 / 185	105 / 221	65 / 149	85 / 185	85 / 185	150 / 302	160 / 320	537 / 1000
Température min. en utilisation continue	°C/°F	-60 / -76	-60 / -76	-60 / -76	-20 / -4	-40 / -40	-40 / -40	-60 / -76	-46 / -50	-80 / -112
Couleur	-	Naturel	Noir	Teinte verte	Blanc	Noir	Noir	Turquoise	Marron	Inoxydable

⁽¹⁾ ASTM D638-878 excepté l'acier inoxydable qui est ASTME8

Attaches pour câbles en acier inoxydable

Spécifications

Nom ou numéro du type AISI			201		201 ¼ dur		301	
С	Désignation UNS		S20100	,	S20100		S30100	
Spécification	ASTM		A-666		A-666		A-666	
		С	0,15 Max.	С	0,03 Max	С	0,15 Max	
		Mn	5,50 - 7,50	Mn	5,50 - 7.50	Mn	2,00 Max	
% des principaux éléments d'alliage		Si	,75 Max	Si	1,00 Max	Si	1,00 Max	
70 des principaux elements à amage		Cr	16,00 - 18,00	Cr	16,00 - 18,00	Cr	16,00 - 18,00	
		Ni	3,50 - 5,50	Ni	3,50 - 5,50	Ni	6,00 - 8,00	
		N	0,25 Max	N	0,25 Max			
Propriétés physique								
Densité, lb/ po 3			0,28		0,28		0,29	
Mod. d'élasticité en tension x 106 PS	l		28,0		28,6		28,0	
Structure			Austénitique		Austénitique		Austénitique	
	32 - 212°F		8,7		9,0		9,4	
Coefficient moyen de	32 - 600°F		9,7		10,0		9,5	
dilatation thermique par °F x 10-6	32 - 1000°F		10,2		10,5	10,		
	32 - 1200°F		10,5		_	10		
Intervalle de fusion			2 550 - 2 650°F		2 550 - 2 650°F		2 550 - 2 590°F	
Propriétés électriques		No	on magnétique	N	on magnétique	N	on magnétique	
Perméabilité magnétique, recuit			μ = 1,02		μ = 1,02	1	μ = 1,02	
Résistivité électrique, microhm – cm	, 70 °F		69,00		69,00		72,00	
Propriétés mécaniques								
Dureté Rockwell			90 - 95R _B		20 - 30R _B		75 - 95R	
Résistance à la traction -spéc. min. d	e		100 000		120 000	100 000		
BAND-IT (PSI) et typique (PSI)		115 000			135 000	105 000		
Limite d'élasticité - spéc. min. de BAN	ND-IT		45 000		85 000	45 000		
(PSI) et typique (PSI)			45 000		90 000	55 000		
% d'allongement par 2 po spéc. min.	de		40		40		40	
BAND-IT (PSI) et typique (PSI)			55		45		50	
Résistance à la traction à	1 300°F		37 500		37 500		35 500	
Temp. élevée	1 500°F		23 000		23 000		22 500	
Tests durée courte (PSI)	1 700°F		11 000		11 000		11 000	
Résistance à la corrosion								
Atmosphère normale et eau douce			Bonne		Bonne		Bonne	
Atmosphère industrielle			Bonne		Bonne		Bonne	
Atmosphère marine			Passable		Passable		Passable	
Eau salée			Non		Non		Nor	
Produits chimiques doux			Passable		Passable		Passable	
Produits chimiques oxydants			Passable		Passable		Passable	
Produits chimiques réducteurs		Non		Non		Nor		

Toutes les valeurs de ce tableau ne sont données qu'à titre de référence seulement.

Degré d'inflammabilité UL

Degrés d'inflammabilité UL

Remarque: Ces tests pour l'inflammabilité du matériau plastique ont pour but de servir d'indication préliminaire d'acceptabilité au niveau de l'inflammabilité pour des applications particulières.

Procédures du test vertical de combustion UL 94

Des spécimens de test du matériau, avec des dimensions de 127 mm x 12,7 mm (5 po x ½ po) et une épaisseur nécessaire à son intégration dans le produit final, sont testés à la fois dans leur condition à la sortie de l'usine ainsi que dans un état âgé. Le test exige que le spécimen soit fixé en position verticale et qu'une flamme contrôlée précisément soit appliquée pour une période de 10 secondes. La flamme est retirée et le temps de combustion est noté. Si la flamme s'éteint, une seconde exposition à la flamme pendant 10 secondes est effectuée et la durée de combustion est à nouveau notée. On observe et note également si les spécimens de tests libèrent des particules enflammées qui mettent le feu à un échantillon de coton.

Les matériaux classés V-0:

Un matériau classé V-0 doit:

- A. N'avoir aucun spécimen qui brûle par combustion avec flammes pendant plus de 10 secondes après toute application de la flamme de test.
- B. Ne pas voir un temps total de combustion avec flammes supérieur à 50 secondes pour les 10 applications de la flamme pour chaque ensemble de cinq spécimens.
- C. N'avoir aucun spécimen qui brûle par combustion avec flammes ou avec incandescence jusqu'à l'appareil de fixation.
- D. N'avoir aucun spécimen qui libère des particules enflammées qui brûlent le coton chirurgical absorbant sec situé à 12 pouces sous le spécimen de test.
- E. N'avoir aucun spécimen avec une combustion incandescente qui persiste pour plus de 30 secondes après la seconde application de la flamme du test.

Les matériaux classés UL 94 V-1:

Un matériau classé UL 94 V-1 doit:

- A. N'avoir aucun spécimen qui brûle par combustion avec flammes pendant plus de 30 secondes après l'application de la flamme test.
- B. Ne pas avoir un temps total de combustion avec flammes supérieur à 250 secondes pour les 10 applications de la flamme pour chaque ensemble de cinq spécimens.
- C. N'avoir aucun spécimen qui brûle par combustion avec flammes ou avec incandescence jusqu'à l'appareil de fixation.

- D. N'avoir aucun spécimen qui libère des particules enflammées qui brûlent le coton chirurgical absorbant sec situé à 12 pouces sous le spécimen de test.
- E. N'avoir aucun spécimen avec une combustion incandescente quipersiste pour plus de 60 secondes après la seconde application de la flamme de test.

Les matériaux classés UL 94 V-2:

Un matériau classé UL 94 V-2 doit:

- A. N'avoir aucun spécimen qui brûle par combustion avec flammes pendant plus de 30 secondes après l'application de la flamme de test.
- B. Ne pas avoir un temps total de combustion avec flammes supérieur à 250 secondes pour les 10 applications de la flamme pour chaque ensemble de cing spécimens.
- C. N'avoir aucun spécimen qui brûle par combustion avec flammes ou avec incandescence jusqu'à l'appareil de fixation.
- D. Pouvoir avoir des spécimens qui libèrent des particules enflammées qui brûlent seulement brièvement, dont certaines enflamment le coton chirurgical absorbant sec situé à 12 pouces du spécimen test.
- E. N'avoir aucun spécimen avec une combustion incandescente qui persiste pour plus de 60 secondes après la seconde application de la flamme de test.

Procédures du test vertical de combustion UL 94 HB

Des échantillons de matière d'une dimension de 127 mm x 12,7 mm (5 po x ½ po), d'une épaisseur destinée à l'utilisation de la fin du produit, sont testés à la fois en condition d'utilisation et en état de vieillissement. L'échantillon doit être placé verticalement et soumis à une flamme pendant 10 secondes. La flamme est ensuite enlevée et le temps de combustion est noté. S'il y a extinction, une seconde exposition à la flamme est réalisée durant 10 secondes et le temps de combustion est encore noté. Il est observé et enregistré qu'aucun échantillon ne doit faire tomber de particules enflammées pouvant embraser un coton.

Les matériaux classés UL 94 HB

Une matière de moins de 3 mm d'épaisseur sera classée 94 HB si elle a un taux de combustion inférieur à 76,2 mm par minute ou un arrêt de combustion inférieur à 127 mm. Si un des 3 échantillons faillit à cette règle, un second jeu de 3 échantillons est testé. Les 3 échantillons du second test doivent être conformes. Les matières classées HB sont considérées comme « auto-extinguible ». C'est le niveau le plus faible des degrés d'inflammabilité UL 94.

Spécifications et choix des matières

Choix de la bonne matière pour vos applications

ABB offre des attaches pour câbles et des accessoires de câblage dans un grand choix de matières, selon le type d'application et l'environnement. L'objectif de ce document est donc de vous aider à sélectionner le type de matière qui conviendrait le mieux à votre application.

Les effets des intempéries, des flammes, des produits chimiques et des radiations sur les différentes matières sont repris dans les tableaux ci-après.

Une fois que vous avez déterminé la matière appropriée à votre application, il suffit de la choisir dans la gamme d'attaches et d'accessoires proposés par ABB.

Polyamide 6.6

- Matière thermoplastique pour toutes les applications industrielles
- Excellente résistance aux chocs, aux hydrocarbures et aux fluctuations de température
- Grande dureté en surface et faible coefficient de friction
- Degré d'inflammabilité: UL 94 V-2
- Sans halogène et sans silicone
- Disponible en version naturelle ou de différentes couleurs
- · Applications intérieures

Caractéristiques des matières

Remarque: Le Nylon (Polyamide) est par nature sensible aux conditions environnementales. Les attaches sont humidifiés afin d'obtenir un niveau de performance maximum dès leur sortie de production. Ils devront être stockés dans un environnement sec et frais sans être exposés aux rayons du soleil. Les attaches pour câbles sont conditionnées dans des sacs plastiques emplis d'humidité et devront rester fermés hermétiquement jusqu'à leur utilisation.

Polyamide 6.6, résistant aux intempéries

- Similaire au polyamide 6.6, mais recommandé pour les applications extérieures
- Résistant aux rayons UV
- · Sans halogène et sans silicone
- Les attaches Ty-Fast en polyamide 6.6 résistant aux intempéries sont offertes en noir seulement (avec 2% de carbone pour les spécifications militaires)
- Les attaches Ty-Rap en polyamide 6.6 résistant aux intempéries sont offertes en noir (avec 2% de carbone pour les spécifications militaires) et dans une vaste gamme de couleurs (sauf Naturel)
- Degré d'inflammabilité: UL 94 V-2

Résistant aux rayons

intempéries

Spécifications et choix des matières

Polyamide 6.6, thermostabilisé

- Similaire au polyamide 6.6, mais plage de températures d'utilisation plus étendue, jusqu`à +105°C (+221°F)
- · Excellente résistance à la traction
- · Haute résistance à la température
- Couleur: Vert (goutte d'eau)
- Degré d'inflammabilité: UL 94 V-2

Polyamide 6.6, retardateur de flamme

- Auto-extinguible selon UL 94 V-0
- Convient aux applications où des vies humaines sont en jeu
- · Couleur: blanc

Polyamide 6.6, thermostabilisé et Anti- UV

- Similaire au polyamide 6.6, mais recommandé pour les applications extérieures et/ou pour des applications de haute températures 105°C (221°F)
- Combine les avantages du Polyamide 6.6 résistant aux intempéries et du Polyamide 6.6 thermostabilisé
- · Couleur: noir
- Degré d'inflammabilité: UL 94 V-2

Résistant aux intempéries

stabilisé

Polyamide 6.6 détectable

- Identique au polyamide 6.6, mais contient un composite polymère unique qui est détecté par les détecteurs de métaux (réglés à une sensibilité de 1,5mm (0,06")) et par les équipements radiographiques (rayon X)
- La couleur bleu clair facilite l'identification visuelle
- Spécialement recommandé dans l'industrie de transformation agro-alimentaire, production pharmaceutique, ou toute autre industrie sensible aux risques de contamination et dotée d'un système de détection
- Sans halogène et sans silicone
- Degré d'inflammabilité : UL 94 V-2

Détectable

Spécifications et choix des matières

Polyamide 12, résistant aux intempéries

- · Extrêmement flexible, même à basse température
- Vieillit mieux que le Polyamide 6.6
- · Résistant aux rayons UV et aux intempéries
- Meilleure résistance aux produits chimiques que le Polyamide 6.6
- · Couleur: noir
- Degré d'inflammabilité: UL 94 V-2

Résistant

basse intempéries température

chimiques

Polyamide 4.6, haute température (+150°C)

- Similaire au polyamide 6.6, mais avec une extrême résistance aux hautes températures +150°C (+221°F)
- · Sans halogène et sans silicone
- · Couleur: vert clair
- Degré d'inflammabilité: UL 94 V-2

Polypropylène résistant aux intempéries

- · Résiste aux acides inorganiques, aux alcools polyhydriques, aux sels neutres et basiques
- Résiste à un grand nombre de produits chimiques
- · Résistant aux rayons UV
- · Résistance à la traction plus faible que le Polyamide 6.6
- · Couleur: noir
- · Degré d'inflammabilité: UL 94 HB

Résistant aux intempéries

aux produits

Polypropylène détectable

- · Identique au polypropylène, mais contient un composite polymère unique qui est détecté par les détecteurs de métaux (réglés à une sensibilité de 1,5 mm) et par les équipements radiographiques (rayon X)
- · La couleur bleu clair facilite l'identification visuelle,
- Spécialement recommandé dans l'industrie de transformation agro-alimentaire, production pharmaceutique, toute autre industrie sensibles aux risques de contamination et dotée d'un système de détection
- · Sans halogène et sans silicone
- · Degré d'inflammabilité: UL 94 HB

Spécifications et choix des matières

ETFE fluoropolymère

- Résistance mécanique plus faible que le Polyamide 6.6
- Ne réagit pas à la plupart des solvants et des produits chimiques, huiles. Résistant aux rayons UV et aux intempéries
- Très bonne résistance aux radiations à forte énergie.
- · Remplit les conditions IEEE383 et est approuvé pour une utilisation en centrale nucléaire
- · Pas d'émission de gaz pour les applications à gravité zéro
- · Résistant à très haute température
- Degré d'inflammabilité: UL 94 V-0
- · La meilleure matière plastique pour les attaches
- · Couleur: aigue-marine

Flexible température

aux produits chimiques

ECTFE fluoropolymère

- Similaire aux performances du ETFE fluoropolymère
- · Faible émission de fumée lors de sa combustion
- · Recommandé pour les applications liées à la ventilation, aération, évacuation de fumée
- · Couleur: Bordeaux
- Degré d'inflammabilité: UL 94 V-0

stabilisé

Résistant aux rayons UV de flamme

aux intempéries

émission

Résistant aux produits

Acétal trempé résistant

- Excellente résistance à la plupart des solvants, éther, huiles, essences, graisses et d'autres hydrocarbures
- · Résistant aux acides et bases dilués
- · Résistant aux rayons UV
- · Auto-extinguible
- · Couleur: noir
- · Degré d'inflammabilité: UL 94 HB

intempéries

Résistant aux produits

_

Guide de sélection et de commande du matériau

Résistance aux produits chimiques

Le tableau 3 montre la résistance des matériaux d'attaches pour câbles Ty-Rap à des produits chimiques variés. Ce tableau est conçu pour vous aider à déterminer le matériau d'attache pour câbles qui correspond le mieux à un environnement chimique particulier.

_

Le tableau 3 – Résistance des matières aux différents produits chimiques à une température de 21°C

Produit	Concen- tration	HS PA6.6	τv	DEL	PA6.6	UV PA6.6	FR PA6.6	UV PA12	PP	UVPP	TZ	ss
Acetaldehyde	50%	S			S	S	S				_	
Acétate de plomb	5%		E	_		_	_	_	E	E	E	E
Acétate de Sodium	60%	E	Е	_	E	E	E	_	E	E	E	Е
Acétone	100%	E	Е	F	Е	Е	E	Е	Е	E	E	E
Acide benzoïque	100%	NR	Е	_	NR	NR	NR	E	E	E	E	Е
Acide butyrique	50%	NR	Е	_	NR	NR	NR	_	E	E	E	Е
Acide chloroacétique	30%	NR	_	_	NR	NR	NR	_	_	_	F	F
Acide chromique	50%	NR	S	_	NR	NR	NR	_	F	F	F	F
Acide citrique	50%	S	Е	Е	S	S	S	Е	E	E	E	Е
Acide gallique	AQ	_	Е	_	_	_	_	_	_	_	E	Е
Acide hydrocyanique	Totale	_	Е	_	_	_	_	_	E	E	E	Е
Acide lactique	10%	E	Е	_	E	Е	E	S	E	E	E	Е
Acide malique	AQ	_	Е	_	_	_	_	_	E	E	Е	Е
Acide nitreux	5%	_	E	_	_	_	_	_	F	F	E	Е
Acide nitrique	30%	NR	Е	NR	NR	NR	NR	_	E	E	Е	Е
Acide nitrique	30-70%	NR	S	NR	NR	NR	NR	_	F	F	S	Е
Acide oieique	100%	-	Е	S	-	-	-	-	E	Е	E	Е
Acide oxalique	10%	_	E	-	-	_	-	S	E	Е	E	Е
Acide phosphorique	10%	NR	E	-	NR	NR	NR	-	E	E	E	Е
Acide picrique	1%	-	E	-	-	-	-	-	E	E	E	Е
Acide stéarique	100%	_	E	_	_	_	_	F	Е	E	E	Е
Acide sulfurique	5%	NR	F	F	NR	NR	NR	F	F	F	F	F
Acide sulfurique	Conc.	NR	E	NR	NR	NR	NR	-	S	S	E	Е
Acide tannique	10%	_	Е	-	_	_	_	-	Е	E	E	Е
Acide tartrique	50%	-	E	E	-	_	-	E	E	E	E	Е
Alcool de methyl	100%	S	E	-	S	S	S	E	E	E	E	Е
Alcool de propyl	100%	Е	Е	-	Е	Е	Е	-	Е	Е	Е	Е
Alcool diéthylique	100%	S	Е	-	S	S	S	Е	Е	Е	Е	Е
Alcool isopropyl	100%	S	Е	-	S	S	S	Е	Е	Е	Е	Е
Ammoniaque	Totale	-	Е	-	_	_	_	Е	Е	Е	Е	_
Benzène	100%	E	E	F	E	Е	Е	Е	S	S	E	Е
Bicarbonate de Sodium	Totale	E	Е	-	Е	Е	E	E	E	Е	E	Е
Bisulfate de Sodium	10%	-	Е	Е	_	-	_	E	E	Е	Е	Е
Borate de Sodium	Totale	-	Е	-	_	-	_	-	E	Е	E	Е
Bromure de potassium	AQ	-	-	-	_	_	-	-	S	S	S	S
Carbonate d'ammonium	5%	S	E	-	S	S	S	E	E	Е	E	Е
Carbonate de baryum	Totale	-	E	-	_	_	-	E	E	Е	E	Е
Carbonate de calcium	AQ	-	Е	_	_	-	_	-	Е	Е	Е	Е
Carbonate de magnésium	Totale	-	Е	_	_	_	-	Е	Е	Е	Е	Е

Classification:

E = excellent,

S = satisfaisant,

F = acceptable,

NR = non recommandé,

(AQ = aqueux)

Guide de sélection et de commande du matériau

Résistance aux produits chimiques

一.

Tableau 3 – Résistance des matières aux différents produits chimiques à une température de 21°C

	Concen-	HS				UV	FR	UV				
Produit	tration	PA6.6	TV	DEL	PA6.6	PA6.6	PA6.6	PA12	PP	UVPP	TZ	SS
Carbonate de potassium	1%		Е	-	-	-	-	Е	E	Е	Е	E
Carbonate de sodium	5%	Е	E	S	Е	E	E	Е	Е	E	E	Е
Carburant pour réacteurs	100%	E	E	_	E	E	E		S	S	E	Е
Chlorate de potassium	AQ		E	_				S	E	E	E	Е
Chlorate de sodium	25%	_	Е	E	_		_	S	E	E	E	Е
Chlore (humide)	-	NR	_	_	NR	NR	NR	-	F	F	F	F
Chlore (sec)	_	NR	_	_	NR	NR	NR	_	NR	NR	F	F
Chloride barium	5%	NR	_	_	NR	NR	NR	E	E	E	E	Е
Chloride de sodium	2%	E	E	S	E	E	E	E	Е	E	E	Е
Chloroforme	100%	-	Е	-	-	-	-	F	F	F	E	Е
Chlorure d'ethyl	100%	_	S	E	-	_	-	F	F	F	E	Е
Chlorure de magnésium	10%	F	_	-	F	F	F	F	F	F	F	F
Chlorure de methyl	100%	_	S	_	_	_	_	-	S	S	Е	Е
Chlorure de zinc	70%	F	Е	NR	F	F	F	Е	Е	Е	Е	Е
Cidre	_	_	Е	-	_	_	_	-	Е	Е	Е	Е
Cyanure de cuivre	10%	_	Е	_	-	_	_	-	Е	Е	Е	Е
Dichloroéthane	100%	_	Е	_	_	_	_	-	_	_	Е	Е
Dichromate de potassium	40%	NR	E	_	NR	NR	NR	F	E	E	E	Е
Dioxyde de sulfure	Totale	NR	E	_	NR	NR	NR	E	E	E	E	Е
Essence	100%	Е	Е	_	Е	Е	E	-	S	S	Е	Е
Ether de pétrole	100%	_	Е	_	_	_	_	E	F	F	Е	Е
Ether diéthyl	100%	_	Е	S	_	_	_	E	E	E	Е	Е
Ferrocyonate de potassium	25%	_	Е	_	_	_	_	_	E	E	Е	Е
Fluoride de sodium	5%	_	_	_	_	_	_	_	F	F	F	F
Furfurale	100%	_	E	_	_	_	_	_	F	F	Е	Е
Glycérine	100%	_	Е	_	_	_	_	E	E	E	_	Е
Glycol d'éthylène	100%	E	Е	S	E	Е	Е	_	Е	E	Е	Е
Huile carburant	100%	_	Е	_	_	_	_	Е	_	_	Е	Е
Huile de lin	10%	E	Е	Е	E	Е	Е	Е	Е	E	Е	Е
Huile de napthe	100%	_	Е	_	_	_	_	_	E	Е	Е	E
Hydrochlorite de calcium	2	NR	_	_	NR	NR	NR	_	F	F	F	F
Hydroxyde d'ammonium	10%	Е	Е	F	Е	Е	E	_	E	Е	Е	E
Hydroxyde de calcium	20%	_	F	Е	_	_	_	_	E	E	Е	E
Hydroxyde de fer	Totale	_	E	_	_	_	_	_	E	E	E	E
Hydroxyde de potassium 5%	S	E		S	S	S	_	E	E	E	 E	
Hydroxyde de sodium	10%	E	E	S	E	E	E	E	E	E	E	
Hydroxye d'aluminium	AQ		E						E	E	E	
Hyposulfite de sodium	AQ	_	E	_	_	_	_	_			E	
lodide de potassium	Totale	_	E			_		E	E	E	E	
Classification:	Totale			-								

E = excellent,

S = satisfaisar

F = acceptable,

NR = non recommandé,

(AQ = aqueux)

_

Guide de sélection et de commande du matériau

Résistance aux produits chimiques

Tableau 3 – Résistance des matières aux différents produits chimiques à une température de 21°C

	Concen-	HS				UV	FR	UV				
Produit	tration	PA6.6	TV	DEL	PA6.6	PA6.6	PA6.6	PA12	PP	UVPP	TZ	SS
Iodoforme	100%	_	E	_	_	_	_	_	_	_	E	E
Kétone de methyl éthyl	100%	-	E	F	-	-	-	E	Е	E	E	Е
Lanoline	10%	E	E	-	E	E	E	E	E	E	E	Е
Mercure	100%	-	E	-	_	_	-	E	E	E	Е	Е
Nitrate d'ammonium	-	-	E	_	-	-	-	E	Е	E	E	Е
Nitrate d'argent	10%	-	E	-	-	_	-	Е	E	Е	Е	Е
Nitrate de cuivre	50%	-	E	-	-	-	-	-	E	Е	Е	Е
Nitrate de fer	10%	=	E	-	=	-	-	-	E	E	Е	Е
Nitrate de magnésium	Totale	-	E	_	_	_	-	E	E	E	E	Е
Nitrate de potassium	50%	F	E	_	F	F	F	E	E	E	E	Е
Nitrate de sodium	5%	E	E	-	E	E	E	E	E	E	E	Е
Nitrate de zinc	AQ	_	Е	_	_	_	_	Е	Е	E	Е	Е
Nitrite de sodium	AQ	_	Е	_	_	_	_	S	Е	E	Е	Е
Paraffine	100%	E	Е	_	Е	Е	E	Е	Е	E	Е	Е
Perchlorate de sodium	10%	_	Е	_	_	_	_	_	_	_	Е	Е
Permanganate de potassium	5%	NR	Е	S	NR	NR	NR	NR	Е	E	Е	Е
Peroxyde d'hydrogène	30%	NR	Е	F	NR	NR	NR	S	Е	E	Е	Е
Phénol	90%	NR	Е	NR	NR	NR	NR	_	Е	E	Е	Е
Phosphate de sodium	5%	_	Е	_	-	_	-	Е	Е	E	Е	Е
Sulfate d'ammonium	10%	_	Е	_	_	_	_	S	S	S	S	S
Sulfate de baryum	10%	Е	_	_	Е	Е	Е	Е	Е	E	Е	Е
Sulfate de calcium	2%	-	Е	_	_	_	_	-	Е	E	Е	Е
Sulfate de fer	10%	-	Е	_	_	_	-	-	Е	E	Е	Е
Sulfate de potassium	5%	-	Е	-	-	_	-	Е	Е	E	Е	Е
Sulfate de sodium	5%	S	Е	_	S	Е	Е	E	Е	E	Е	Е
Sulfate de zinc	AQ	_	Е	_	_	_	-	E	Е	E	Е	Е
Sulfide de baryum	10%	S	_	_	S	S	S	Е	Е	E	Е	Е
Sulfide de potassium	AQ	-	Е	-	-	-	-	-	Е	E	Е	Е
Sulfure	100%	_	Е	-	-	_	_	Е	Е	Е	Е	Е
Sulfure d'hydrogène Sec	NR	Е	_	NR	NR	NR	Е	Е	Е	Е	Е	Е
Tetrachlorure de Carbone	100%	Е	Е	Е	Е	Е	Е	Е	F	F	Е	Е
Tetrahydrofuran	100%	_	F	E	_	_	_	S	F	F	E	E
Thiosulfate de sodium	5%	-	_	S	_	_	_	S	S	S	S	S
Toluène	100%	E	E	F	E	E	Е	E	F	F	E	F
Xylène	100%	E	_	Е	E	E	E	F	F	E	E	

Classification:

 $\mathsf{E} = \mathsf{excellent},$

S = satisfaisant,

F = acceptable,

NR = non recommandé,

(AQ = aqueux)

Caractéristiques des matières adhésives

Instructions de montage pour les embases autoadhésives

- La surface de montage doit être lavée avec un produit nettoyant à base d'alcool (IPA) avant application.
- Les embases adhésives ont une mousse adhésive double face, l'une pour le maintien de l'embase, l'autre recouverte d'un film de protection
- Pour la pose, retirer le film de protection et presser l'embase sur la surface nettoyée
- L'épaisseur de la mousse est de 0,8 mm permettant de gommer les irrégularités de la surface en contact pour une meilleure tenue mécanique.
- L'adhésion est immédiate et ne permet pas un positionnement après la pose

N° de cat.: TC2PA

Caractéristiques

- Colle à 2 composants : adhésif et activateur
- · Application facile
- Tenue mécanique durable
- Idéale pour les surfaces telles que tous les polyamides, les embases aluminium, et les pinces-câbles
- Applicable également sur le béton et autres surfaces poreuses
- · Résistant aux rayons UV

Informations techniques

- Description: colle à 2 composants
- Poids: 0,21 kg

Instructions de montage: Réf. Produit TC2PA (colle à 2 composants)

- La surface de contact doit être nettoyée avant l'application. L'adhésif liquide doit être étalé sur la surface. Ne pas utiliser sur des surfaces brutes tel que le béton.
- L'activateur est ensuite étalé sur l'embase
- Placer la surface recouverte d'adhésive de l'embases sur la surface où elle doit être installée, positionner l'embases correctement et presser fermement.
- Repositionner l'embase idéalement, vous avez quelques secondes
- Ne pas utiliser l'embase immédiatement après sa pose, l'adhésif à base de caoutchouc garantit un collage instantané. Tandis que la base acrylique permet, elle, un repositionnement. Attendre 24 à 72 heures avec les adhésifs à base d'acrylique pour de meilleurs résultats.
- Température de pose: environ +20°C

Caractéristiques des matières adhésives

Caractéristiques	Méthode	Unité de mesure	Base caoutchouc (auto-adhésive)	Base acrylique (colle à 2 composants)
Faces avec revêtement	-	chacune	2	2
Densité de la mousse	_	Kg/m³	96,9	96,9
Partie adhésive	PSTC 1	Largeur N/cm	10,9	10
	ASTM D 1000	Moyenne		8,8
Tenue de l'adhésif	Naturel	15,0	15,0	10
22°C (71,6°F) 50% RH	PSTC 7	Heures	100 +	8 +
22°C (71,6°F) Humidité occasionnelle		N/m²	68971	15174
Résistance à la traction	ASTM D 412	PSI	100	100 +
Résistance à l'arrachement	ASTM D 624	N/cm	52,6	52,6+
Rupture à l'élongation	_	%	400	200
Température d'utilisation	-	°C/°F Min	-18	-29
	_	°C/°F Max	+66	+79
Inflammabilité	ASTM D 624		Retardateur de flamme	Retardateur de flamme

Table de conversion des unités

Table de conversion des unités

Unité x	Constante	= Unité	Unité	х	Constante	= Unité
BTU	778,0	pied/livre (pi x lb)	gallons		0,13368	pied cube (pi³)
BTU	1054,8	Joule	gallons		231,0	pouce cube (po³)
BTU	0,293	Watt-heure(W x h)	gallons		3,785,332	centimètres cube (cm³)
centimètres (cm)	0,032808	pied (pi)	grammes (g)		15,432	grains
centimètres (cm)	0,3937	pouces (po)	grammes/centimètr	e³ (gm/cm³)	0,0361275	livre/in³ (lb/in³)
centimètres (cm)	0,00001	kilomètres (km)	cheval-vapeur (cv)		33,000,0	pi x lb/min
centimètres (cm)	0,010	mètres (m)	cheval-vapeur (cv)		550,0	pi x lb/sec
centimètres (cm)	10,0	millimètres (mm)	cheval-vapeur (cv)		745,7	Watts (W)
mils circulairs	0,00064516	circular millimètres	pouce (po)		0,027178	yards (yd)
mils circulairs	0,0000007854	pouces² (po²)	pouce (po)		0,083333	pied (pi)
mils circulairs	0,000506671	millimètre carré (mm²)	pouce (po)		0,00002540	kilomètre (km)
mils circulairs	0,7854	mils²	pouce (po)		0,025400	metre (m)
centimètre cube (cm³)	0,000035314	pied cube (pi³)	pouce (po)		2,54000514	centimètre (cm)
centimètre cube (cm³)	0,061023	pouce cube (po³)	pouce (po)		25,4000514	millimètre (mm)
centimètre cube (cm³)	0,000001	mètre cube (m³)	pouce (po)		1,000,0	mils
centimètre cube (cm³)	0,0026417	gallons	Joules		0,000948	BTU
pied cube (ft³)	17,280	pouce cube (po³)	Joules		107	ergs
pied cube (ft³)	28317,016	centimètre cube (cm³)	liters (I)		61,0250	pouce cube (po³)
pouce cube (po³)	0,00057870	pied cube (pi³)	metres (m)		1,093611	yard (yd)
pouce cube (po³)	0,000016387	mètre cube (m³)	metres (m)		3,2808333	pied (pi)
pouce cube (po³)	16,387162	centimètre cube (cm³)	metres (m)		39,37	pouce (po)
mètre cube (m³)	1,000,000,0	centimètre (cm)	metres (m)		100,0	centimètre (cm)
mètre cube (m³)	35,314456	pied cube (pi³)	miles		1,760,0	yards (yd)
mètre cube (m³)	264,17	gallons	miles		5,280,0	pied (pi)
pied (pi)	0,00018939	miles	miles		1,6093	kilomètre (km)
pied (pi)	0,33333	yards (yd)	millimètres (mm)		0,0032808	pied (pi)
pied (pi)	12	pouces (po)	millimètres (mm)		0,03937	pouce (po)
pied (pi)	0,00030480	kilomètres (km)	millimètres (mm)		0,001	mètres (m)
pied (pi)	0,30480	metres (m)	millimètres (mm)		0,01	centimètres (cm)
pied (pi)	30,480	centimètres (cm)	millimètres (mm)		39,3701	mils
pied (pi)	304,80	millimètres (mm)	millimètres (mm)		1,000,0	microns (μm)
pied/livre (pi/lb)	0,00067197	mètres/grammes (m/g)	Watt (W)		44,25	pi x lb/minute
pied/livre (pi x lb)	0,001285	ВТИ	Watt (W)		0,737562	pi x lb/sec
pied/livre (pi x lb)	1,356	Joules (J)	Watt (W)		0,001341	cheval-vapeur (cv)
pied/livre (pi/lb)	0,1383	kilogramme/mètre (kg/m)	Watt-heure (W x h)		3,41266	BTU
gallons (US)	3,785332	litres (I)				